Partially Observable Markov Decision Process

R04922023 屠政皓

Markov Decision Process (MDP)

- 4-tuple (S, A, R, T)
 - S: set of environment states
 - A: set of actions that agent can execute
 - T: stochastic transition function T(s, a, s') = Pr(s'|s, a)
 - R: reward function R(s, a) modeling the utility of the current state and the action execution
- know completely what is the current state, and state transition determined by the state and action

Partially Observable Markov Decision Process (POMDP)

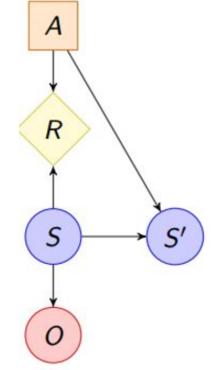
- 7-tuple (S, A, T, R, O, Ω , γ)
 - \circ $\,$ S, A, T, R are the same as MDP $\,$
 - O: the probability of observing o in state s O(s, o) = Pr(o|s)
 - $\circ \quad \Omega:$ set of all possible observations
 - $\circ~\gamma$: discounted factor indicating the rate that rewards are discounted at each step
- unsure which state we are in

Example: Baby Crying Problem

 h_0 : not hungry h_1 : hungry c_0 : not crying c_1 : crying f_0 : not feed f_1 : feed $Pr(c_0|h_0) = 0.9 Pr(c_1|h_0) = 0.1$ $Pr(c_0|h_1) = 0.2 Pr(c_1|h_1) = 0.8$ $Pr(h_0|h_0, f_0) = 0.9 Pr(h_1|h_0, f_0) = 0.1$ $Pr(h_0|h_0, f_1) = 1.0 Pr(h_1|h_0, f_1) = 0.0$ $Pr(h_0|h_1, f_0) = 0.0 Pr(h_1|h_1, f_0) = 1.0$ $Pr(h_0|h_1, f_1) = 1.0 Pr(h_1|h_1, f_1) = 0.0$

$$R(h_0, f_1) = -5 R(h_1, f_1) = -15$$

$$R(h_0, f_0) = 0 R(h_1, f_0) = -10$$



Belief Update

- consider current belief b and updated belief b', action a, observation o,
 - $b = (h_0, h_1)$ $b'(s') \propto \sum_{s \in S} Pr(s'|s, a) Pr(o|s')b(s)$
- Example:

$$b_{0} = (0.5, 0.5)$$

not feed, crying

$$b_{1}(h_{0}) = b_{0}(h_{0})Pr(h_{0}|h_{0}, f_{0})Pr(c_{1}|h_{0}) + b_{0}(h_{1})Pr(h_{0}|h_{1}, f_{0})Pr(c_{1}|h_{0})$$

$$b_{1}(h_{1}) = b_{0}(h_{0})Pr(h_{1}|h_{0}, f_{0})Pr(c_{1}|h_{1}) + b_{0}(h_{1})Pr(h_{1}|h_{1}, f_{0})Pr(c_{1}|h_{1})$$

$$b_{1} = (0.0928, 0.9072)$$

Belief Update

 $b_1 = (0.0928, 0.9072)$ feed, not crying $b_2 = (1.0, 0.0)$ not feed, not crying $b_3 = (0.9759, 0.0241)$ not feed, not crying $b_4 = (0.9701, 0.0299)$ not feed, crying $b_5 = (0.4624, 0.5376)$

POMDP and Belief-State MDP

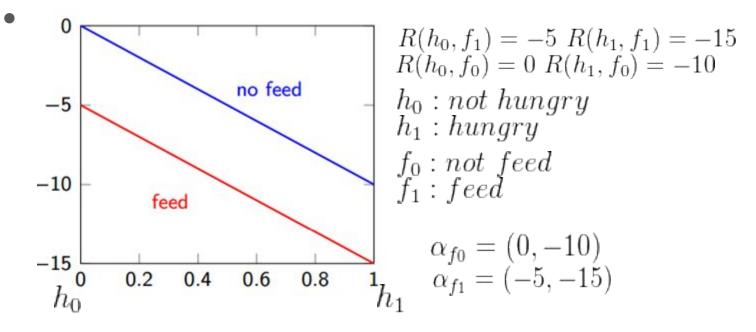
- POMDP is a MDP when states are belief states
- belief state is a probability distribution over the states of original POMDP
- transition probability is the product of actions and observations
- reward becomes the expected reward according to the belief

Solving POMDP

- B: set of belief states
- policy $\pi : B \rightarrow A$
- find a policy that maximizes $E[\Sigma_t \gamma^t R(b_t, a_t) | \pi]$

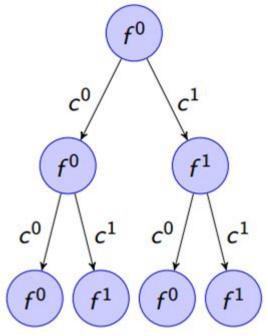
Alpha Vector

- a vector with |S| dimensions
- first consider doing an action in a initial belief state and get expected reward



Conditional Plans

- specifies what to do from a initial belief state after each possible observations up to a certain horizon
- 3-step conditional plan

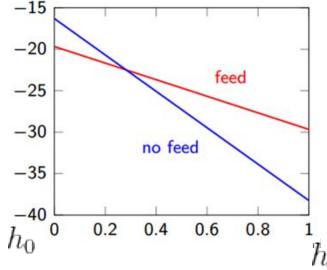


Value Iteration

•
$$U^*(s) = max_{a \in A}[R(s, a) + \gamma \Sigma_{s' \in S} T(s'|s, a) U^*(s')]$$

$$U_{1}^{*}(s) = max_{a \in A}R(s, a) U_{2}^{*}(s) = max_{a \in A}[R(s, a) + \gamma \Sigma_{s' \in S}T(s'|s, a)U_{1}^{*}(s')]$$

- input: A POMDP
- output: a set of alpha vectors
- for a belief state b, the action is $argmax_{a \in A}b \cdot \alpha_a$
- number of alpha can grow up exponentially



Point-Based Value Iteration and Optimization

- may not need to consider all the belief states
- Point-Based Value Iteration (PBVI)
 - approximate the solution by only consider a finite set of belief
 - the approximation error can be bounded
- compile the output of the PBVI to an finite state machine and can do further optimization on the size of the FSM

Reference

- Pineau, J., Gordon, G., & Thrun, S. (2003, August). Point-based value iteration: An anytime algorithm for POMDPs. In IJCAI (Vol. 3, pp. 1025-1032).
- Kochenderfer, M. J., Amato, C., Chowdhary, G., How, J. P., Reynolds, H. J. D., Thornton, J. R., ... & Vian, J. (2015). Decision making under uncertainty: theory and application. MIT press.
- Grzes, M., Poupart, P., Yang, X., & Hoey, J. (2014). Energy Efficient Execution of POMDP Policies.