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Markov Decision Process (MDP)

e 4-tuple (S,A, R, T)
o S: set of environment states
o A: set of actions that agent can execute
o T: stochastic transition function T(s,a,s') = Pr(s'|s,a)
o R:reward function R(s,a) modeling the utility of the current state and the
action execution

e know completely what is the current state, and state
transition determined by the state and action



Partially Observable Markov Decision Process
(POMDP)

o 7/-tuple(S,A, T,R,0,Q7)
o S,A, T, R are the same as MDP
o Q: the probability of observing o in state s O(s, 0) = Pr(o|s)
o (): set of all possible observations
o 7 discounted factor indicating the rate that rewards are discounted at
each step

e unsure which state we are in



Example: Baby Crying Problem

hy : not hungry
hy : hungry

cp : not crying
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Belief Update

e consider current belief b and updated belief ¢, action g, observation o,
b= (hg, 1)
b'(s") x BeesPr(s
e Example:
by = (0.5,0.5)
not feed, crying
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Belief Update

by = (0.0928,0.9072)
feed, not crying

by = (1.0,0.0)

not feed, not crying
by = (0.9759, 0.0241)
not feed, not crying
by = (0.9701, 0.0299)
not feed, crying

b; = (0.4624, 0.5376)



POMDP and Belief-State MDP

e POMDP is a MDP when states are belief states

e Delief state is a probability distribution over the states of
original POMDP

e transition probability is the product of actions and
observations

e reward becomes the expected reward according to the
belief



Solving POMDP

e B: set of belief states
e policym: B— A
e find a policy that maximizes E[X,v'R(b,, a;)|r]



Alpha Vector

e a vector with |[S| dimensions
e first consider doing an action in a initial belief state and get expected reward
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Conditional Plans

e specifies what to do from a initial belief state after each possible observations
up to a certain horizon
e 3-step conditional plan
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Value lteration

o [*(s) = maxge 4[R(s,a) + vXgesT(s|s, a)U*(s
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e input: APOMDP ~20

e output: a set of alpha vectors P

e for a belief state b, the action is argmaz,c 20 - a,

e number of alpha can grow up exponentially =30
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Point-Based Value lteration and Optimization

e may not need to consider all the belief states
e Point-Based Value Iteration (PBVI)

o approximate the solution by only consider a finite set of belief
o the approximation error can be bounded

e compile the output of the PBVI to an finite state machine
and can do further optimization on the size of the FSM
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