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Markov Decision Process (MDP)

● 4-tuple (S, A, R, T)
○ S: set of environment states 
○ A: set of actions that agent can execute 
○ T:  stochastic transition function 
○ R: reward function           modeling the utility of the current state and the 

action execution 

● know completely what is the current state, and state 
transition determined by the state and action 
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Partially Observable Markov Decision Process 
(POMDP)

● 7-tuple (S, A, T, R, O,   ,   )
○ S, A, T, R are the same as MDP
○ O: the probability of observing o in state s 
○    : set of all possible observations
○   : discounted factor indicating the rate that rewards are discounted at 

each step 

● unsure which state we are in 
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Example: Baby Crying Problem 
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Belief Update
● consider current belief    and updated belief    , action   , observation   , 

● Example:
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Belief Update 
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POMDP and Belief-State MDP

● POMDP is a MDP when states are belief states 
● belief state is a probability distribution over the states of 

original POMDP 
● transition probability is the product of actions and 

observations
● reward becomes the expected reward according to the 

belief 
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Solving POMDP

● B: set of belief states
● policy        B      A
● find a policy that maximizes 
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Alpha Vector 
● a vector with |S| dimensions
● first consider doing an action in a initial belief state and get expected reward 
●
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Conditional Plans
● specifies what to do from a initial belief state after each possible observations 

up to a certain horizon 
● 3-step conditional plan 
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Value Iteration 
●  

● input: A POMDP
● output: a set of alpha vectors 
● for a belief state b, the action is
● number of alpha can grow up exponentially  
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Point-Based Value Iteration and Optimization  

● may not need to consider all the belief states 
● Point-Based Value Iteration (PBVI)

○ approximate the solution by only consider a finite set of belief 
○ the approximation error can be bounded 

● compile the output of the PBVI to an finite state machine 
and can do further optimization on the size of the FSM 
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