Local Feature Matching

2016-10-27 Presented by: Cheng-Hao Tu

Outline

- Background
- Basic Pipeline
- Method
- Experiment
- Summary and Future

Background

- Panorama
 - Given multiple images, try to reconstruct the whole scene
- Popular method
 - SIFT

Basic pipeline

• Detector + Descriptor

Basic pipeline

- Detector
 - Propose some key points on image
 - Estimate scale and rotation for each point

Basic pipeline (cont'd)

- Descriptor
 - Extract and normalize the the regions
 - Obtain a description for each region

- Match regions according to their descriptors
 - Calculate Distance(desc1, desc2) to determine whether they are correspondences

Basic pipeline (Summary)

- Detector + Descriptor
 - Location, rotation, scale of key points
 - Extracted regions
 - Obtain descriptors for regions to determine the correspondences

Method

- In fact, SIFT detector can be simulated by CNN
- Testing Architecture

Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." *Advances in Neural* 8 *Information Processing Systems*. 2015.

Method (cont'd)

- Training data
 - Unsupervised learning
 - Using augmented data for training
 - rotate, scale, lighting

distance(desc(p1), desc(p2)) the smaller the better

distance(desc(p1), desc(p2)) the bigger the better

Method (cont'd)

- Training architecture
 - Siamese Network

 $L = \begin{cases} distance(A, B)^2 & if A and B are the same \\ max(0, m - distance(A, B))^2 & if A and B are different \end{cases}$

Chopra, Sumit, Raia Hadsell, and Yann LeCun. "Learning a similarity metric discriminatively, with application to face verification." *2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)*. Vol. 1. IEEE, 10 2005.

Method (cont'd)

- Training architecture
 - Green: can do backpropagation

Experiment

 Train on about 8000 images Flicker images (about 48000 different keypoints, 480000 different patches, total 240000(pos)+480000(neg, sampled) pairs per epoch) and Validate on 100 images in MS COCO (500 keypoints for each image)

- Training Scheme
 - First, fix rot, scl, location (initialized as an approximation to sift) and update descriptor

- For rotation transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

- For scale transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

- Training Scheme
 - Second, fixed other components and update scale (with scale supervision generated by data augmentation)

- For rotation transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

- For scale transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

- It seems that some training patches are underfit especially the scale transformation
- So we can try to backpropagate the hard samples with higher probability
 - Only update descriptor network currently
 - Epoch 0 ~ epoch 4, sampled negative pairs randomly
 - Epoch 5 ~ epoch 9, 50% of negative pairs are hard samples (with high loss), and 50% of negative pairs are randomly sampled
 - Epoch 10 ~ epoch 14, all pairs of negative examples are hard samples

- For rotation transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

- For scale transformation
 - Left: COCO IMG (Validation), Right: Flicker IMG (Train)

Summary

• Brief introduction to local descriptor matching

• Learning scale of local feature is much harder than rotation