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Introduction

* Continual Learning aims to continuously learn an
unknown sequence of tasks while keeping the
performance of previously learned ones.

* The training data of previous learned tasks are
assumed to be unavailable for new tasks.



Continual Learning lllustration
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Continual Learning lllustration
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Continual Learning lllustration
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Related Work

* While network expansion is needed to learn multiple
tasks, it usually accompanies with increasing
inference time.

* Progressive [1] progressively expands the network
widths to acquire enough capacity for new tasks.

* CPG [2] uses iterative expansion and pruning
processes to find structures with balance between
model accuracy and speed.

[1] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,K. Kavukcuoglu, R. Pascanu, and R. Hadsell,
“Progressive neuralnetworks,”’arXiv, 2016.

[2] S. C. Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-S. Chen, “Compacting, picking and growing for
unforgetting continual learning,” in Proceedings of Advances in Neural Information Processing Systems, 2019



Related Work

* These methods adopt inefficient expansion
structures (network channels) so they usually
require network compression to make trade-off
between accuracy and inference speed.

* In this paper, we use a more efficient Conditional
Convolution (CondConv) structure for network
expansion to gain the enough model capacity
without losing too much efficiency.



Conditional Convolution (CondConv)

 CondConv [3] uses input-dependent routing weights
to combine multiple convolutional kernels into a

single one.
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We only need to compute the
convolution once with the same
kernel size even though more
than one kernels.

[3] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally parameterized convolutions for efficient
inference,” in Proceedings of Advances in Neural Information Processing Systems, 2019.



CondConv Continual Learning

* We incorporate CondConv structures into Continual

Learning by progressively expanding a new kernel in
each CondConv layer when a new task arrives.
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CondConv Continual Learning

* We incorporate CondConv structures into Continual
Learning by progressively expanding a new kernel in
each CondConv layer when a new task arrives.

New kernel expanded
[ Output of Layer [ — 1 ] for Task k+1.
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CondConv Continual Learning

* We incorporate CondConv structures into Continual
Learning by progressively expanding a new kernel in
each CondConv layer when a new task arrives.

Previous kernels are fixed and

[ Output of Layer / — 1 ] remain unchanged.
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CondConv Continual Learning

* We incorporate CondConv structures into Continual
Learning by progressively expanding a new kernel in
each CondConv layer when a new task arrives.

Use a new routing function to compute the

[ Output of Layer [ — 1 ] combination weights for Task k+1.
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CondConv Continual Learning

e Although our model size of our model size is linearly

proportional to the number of tasks, our model runs
efficiently in inference time.

* |n [3], CondConv remains efficient even when there
are 32 kernels.

[3] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally parameterized convolutions for efficient
inference,” in Proceedings of Advances in Neural Information Processing Systems, 2019.



 On CIFAR100 Twenty Tasks

Experiments

Use a 4-layer convolutional network as backbone

Eventually, CPG becomes 16.34x of the original model size,
and Our method becomes 20.0x

But, in inference time, Our method is 33% faster than CPG

Twn T, T3 Ty Ts5 T Tr Tz To Tiwo Tin Tiz Tis T Tis Tie Tiz Tis Tigo Top [|Ave
Scratch 654 760 750 78.0 830 778 79.2 81.8 822 86.8 834 794 842 784 480 682 638 702 858 88.6 |76.8
Finetuning 65.4 754 745 747 81.2 772 732 804 810 848 86.0 76.6 8l.6 775 46.6 672 632 697 844 886|755
CPG[8] 63.6 768 76.2 744 830 796 792 822 806 870 852 776 824 B8l.6 510 67.8 684 672 858 902 770
Ours 654 774 752 784 814 776 776 822 822 86.8 854 778 838 802 506 710 67.8 698 86.8 912 | 774




Experiments

* Fine-grained Six Tasks
— Use ResNet50 as backbone

— We only use the 1%t ImageNet task to combine the 2nd ~ gth
tasks, and thus we only need to load 2x model size for
these tasks.

Dataset ImageNet CUBS Stanford Cars Flowers WikiArt Sketch |Total Gain
Finetuning - 83.41 92.85 97.12 74.19 79.7 -
Scratch 76.16 42.03 62.94 46.24 55.12 69.48 —151.46
ProgressiveNet[10] 76.16 78.94 89.21 03.41 74.94 76.35 —14.42
PackNet[11] 76.16 81.59 89.62 94.77 71.33 79.91 —10.05
Piggyback[12] 76.16 81.59 89.62 94.77 71.33 79.91 —10.05
CPGI8] 75.81 83.59 92.80 96.62 77.15 80.33 +2.87

Ours 76.16 34.26 92.61 97.16 78.32 80.77 +5.85




Experiments

* ImageNet50 Five Tasks
— Use ResNet18 as backbone

— We extend our model to no-task-boundary settings using
the observation that images from the distribution similar
in training time tend to produce peaked probabilities;
otherwise they produce uniform probabilities.

Method Accuracy

DGMw|[35] 17.82
DGMal35] 15.16
CCGN[14]  35.24

Ours 61.32




Conclusion

* We propose to use CondConv structures in Continual
Learning to enhance the inference efficiency under
network expansion.

 Our method achieves competitive or better
performance compared with others in both task-
boundary and no-task-boundary settings.



