

科技部人工智慧技術 暨全幅健康照護聯合研究中心 Most Joint Research Center for Al Technology and All Vista Healthcare

Compacting, Picking and Growing for Unforgetting Continual Learning

Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song Chen

Institute of Information Science, Academia Sinica, MOST Joint Research Center for Al Technology and All Vista Healthcare, Taipei, Taiwan

NeurIPS 2019

Introduction

Continual lifelong learning

Setting: the training data of old tasks are non-available for new tasks. Assume clear task boundaries (i.e., labels non-overlapping).

Existing Approaches

Regularization (eg. EWC): cannot ensure un-forgetting.

Memory or GAN replay: cannot guarantee the exact performance; replay needs re-training which requires memory.

Dynamic architecture: model is monotonically increased; a redundant structure is yielded.

Motivation of our approach

Deep learning: a process of turning data to weights.

Model compression: pruning the redundant weights does not affect the neural network performance.

Keep the weights — compression-selection-expansion loop: We leverage model compression for continual learning. The old-task weights are compressed and keep fixed, but can be picked (via a learnable mask) for the new task. The picking mask is trained together with the additional weights released for the new task.

Characteristics of our method

Avoid forgetting: The function mappings previously built via the compressed models are maintained as exactly the same when new tasks are incrementally added.

Expand with shrinking: Allows model expansion but keeps the compactness of the model; can handle unlimited sequential tasks.

Compact knowledge base: The condensed model recorded for previous tasks serves as knowledge base with accumulated experience for weights picking, yielding performance enhancement for learning new tasks in our experiments.

Compacting, Picking & Growing (CPG)

Summary of our method

Our method is designed by combining the ideas of deep model compression via weights pruning (Compacting), critical weights selection (Picking), and ProgressiveNet extension (Growing).

•Illustration of our approach

Compacking Picking & Growing (CPG)

(√ Avoid forgetting; √ Compactness; √ Extensible; √ Exploiting previous knowledge better)

Algorithm 1: Compacting, Picking and Growing Continual Learning

Input: given task 1 and an original model trained on task 1.

Set an accuracy goal for task 1;

Alternatively remove small weights and re-train the remaining weights for task 1 via gradual pruning [51], whenever the accuracy goal is still hold;

Let the model weights preserved for task 1 be \mathbf{W}_1^P (referred to as task-1 weights), and those that are removed by the iterative pruning be \mathbf{W}_{1}^{E} (referred to as the released weights);

for task $k = 2 \cdots K$ (let the released weights of task k be W_k^E) **do** Set an accuracy goal for task k;

Apply a mask M to the weights $\mathbf{W}_{1:k-1}^P$; train both M and \mathbf{W}_{k-1}^E for task k, with $\mathbf{W}_{1:k-1}^P$ fixed;

If the accuracy goal is not achieved, expand the number of filters (weights) in the model, reset \mathbf{W}_{k-1}^E and go to previous step;

Gradually prune \mathbf{W}_{k-1}^E to obtain \mathbf{W}_k^E (with $\mathbf{W}_{1:k-1}^P$ fixed) for task k, until meeting the accuracy goal; $\mathbf{W}_k^P = \mathbf{W}_{k-1}^E \backslash \mathbf{W}_k^E$ and $\mathbf{W}_{1:k}^P = \mathbf{W}_{1:k-1}^P \cup \mathbf{W}_k^P$;

References

ProgressiveNet [Andrei A Rusu et al., arXiv16], PackNet [Arun Mallya et al., CVPR18], Pack & Expand (PAE) [Steven CY Hung et al., ICMR19], Piggyback [Arun Mallya et al., ECCV18], Gradual pruning [Michael Zhu et al., ICLR Workshop18], DEN [Jaehong Yoon et al., ICLR18]

Experiments

• 20 tasks on CIFAR100 dataset

Divide CIFAR-100 into 20 tasks. Each has 5 classes. (VGG16-BN model)

The accuracy of DEN, Finetune and CPG for the sequential tasks 1, 5, 10, 15 on CIFAR-100.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg. Exp. Red. (x) Exp.: expansion of weights.

PackNet	66.4	80.0	76.2	78.4	80.0	79.8	67.8	61.4	68.8	77.2	79.0	59.4	66.4	57.2	36.0	54.2	51.6	58.8	67.8	83.2	67.5		0	rica redarradire vvergires.
										l											77.1		0	Scratch: each task independently trained from scratch.
CPG	65.2	76.6	79.8	81.4	86.6	84.8	83.4	85.0	87.2	89.2	90.8	82.4	85.6	85.2	53.2	74.4	70.0	73.4	88.8	94.8	80.9	1.5	0.41	fine-Avg/Max: average/maximum accuracy of fine-tuning
	The nerformance of PackNet DAF and CDG on CIFAR-100 twenty tacks																							
	The periorinance of Fackivet, FAL and CFG off CHAR-100 twenty tasks.															from a previous model randomly selected and repeats the								
										4.0			12				4=	10	10			Exp.	Red.	process 5 times.
Methods	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Avg.	(x)	(x)	CPG avg/max: setting the accuracy goals to be fine-Avg
Scratch	65.8	78.4	76.6	82.4	82.2	84.6	78.6	84.8	83.4	89.4	87.8	80.2	84.4	80.2	52.0	69.4	66.4	70.0	87.2	91.2	78.8	20	0	
fine-Avg	65.2	76.1	76.1	77.8	85.4	82.5	79.4	82.4	82.0	87.4	87.4	81.5	84.6	80.8	52.0	72.1	68.1	71.9	88.1	91.5	78.6	20	0	and fine-Max in CPG, respectively.
fine-Max	65.8	76.8	78.6	80.0	86.2	84.8	80.4	84.0	83.8	88.4	89.4	83.8	87.2	82.8	53.6	74.6	68.8	74.4	89.2	92.2	80.2	20	0	CPG top: setting the goal to be slightly larger than the
CPG avg	65.2	76.6	79.8	81.4	86.6	84.8	83.4	85.0	87.2	89.2	90.8	82.4	85.6	85.2	53.2	74.4	70.0	73.4	88.8	94.8	8 80.9	1.5	0.41	maximum of fine-Avg/Max in CPG.
CPG may	67.0	70.2	77 2	82.0	86.8	87.2	820	85.6	86.4	80.6	00.0	840	87.2	8/18	55 1	73 8	72.0	71.6	80.6	02 8	812	1 5		THUXITTUTT OF JITTE-AVG/TVIUX IIT CF O.

CPG top 66.6 77.2 78.6 83.2 88.2 85.8 82.4 85.4 87.6 90.8 91.0 84.6 89.2 83.0 56.2 75.4 71.0 73.8 90.6 93.6 81.7 1.5 0

: setting the accuracy goals to be fine-Avg x in CPG, respectively. ting the goal to be slightly larger than the fine-Avg/Max in CPG.

The performance of CPGs and individual models on CIFAR-100 twenty tasks.

Facial-informatic Tasks

Task	Train from Scratch	Finetune	CPG	
Face	99.417 ± 0.367	_	99.300 ± 0.384	
Gender	83.70	90.80	89.66	
Expression	57.64	62.54	63.57	
Age	46.14	57.27	57.66	
Exp. (×)	4	4	1	
Red. (×)	0	0	0.003	

Accuracy on facial-informatic dataset. (Model: CNN-20)

Fine-grained Image Tasks

Dataset		Finetune	Prog.Net	Packnet	Piggydack	l CPG	
	Scratch	1 metane	1105.1106	1 acki (ct	1 iggyback	CIG	
ImageNet	76.16	_	76.16	75.71	76.16	75.81	
CUBS	40.96	82.83	78.94	80.41	81.59	83.59	
Stanford Cars	61.56	91.83	89.21	86.11	89.62	92.80	
Flowers	59.73	96.56	93.41	93.04	94.77	96.62	
Wikiart	56.50	75.60	74.94	69.40	71.33	77.15	
Sketch	75.40	80.78	76.35	76.17	79.91	80.33	
Model Size (MB)	554	554	563	115	121	121	

Accuracy on fine-grained tasks. (Model: ResNet-50)

