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Introduction Compacting, Picking & Growing (CPG) Experiments

e Continual lifelong learning

Setting: the training data of old tasks are non-available for new
tasks. Assume clear task boundaries (i.e., labels non-overlapping).

Training Stage

¢20 tasks on CIFAR100 dataset
Divide CIFAR-100 into 20 tasks. Each has 5 classes. (VGG16-BN model )

eSummary of our method

Our method is designed by combining the ideas of deep model compression

Test Stage via weights pruning (Compacting), critical weights selection (Picking), and
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ProgressiveNet extension (Growing).
e|llustration of our approach
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Keep the weights — compression-selection-expansion loop: We
leverage model compression for continual learning. The old-task
weights are compressed and keep fixed, but can be picked (via a
learnable mask) for the new task. The picking mask is trained
together with the additional weights released for the new task.

eCharacteristics of our method

Algorithm 1: Compacting, Picking and Growing Continual Learning
eFine-grained Image Tasks
ImageNet " Birds* Cars

e Facial-informatic Tasks

Face Gender

Input: given task 1 and an original model trained on task 1.

Set an accuracy goal for task 1;

Alternatively remove small weights and re-train the remaining weights tor task 1 via gradual pruning [51],
whenever the accuracy goal 1s still hold;

Expression Age

Flowers Sketchs

Paintings

Let the model weights preserved for task 1 be W (referred to as task-1 weights), and those that are removed
by the iterative pxuninﬂ be W1 (referred to as the released weiﬁhta)

for task k = 2--- K (let the released weights of task k be W) do

Avoid forgetting: The function mappings previously built via the Set an accuracy goal for task & o o — Train from —— p— onmet T Teaim trom] pomerane [ proe et Packvet | precvinck | <P
: : Apply a mask M to the weights VVl 1.1, train both M and W ", for task &, with W1.,._, fixed; Scratch Scratch
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L, . P Age 46.14 727 >7.66 Wikiart 56.50 7560 | 7494 | 69.40 7133 | 77.15

compactness of the model; can handle unlimited sequential tasks. dW = Wi \Wj and Wi = Wi UW: Exp. (9 1 1 1 Sketch 7540 | 8078 | 7635 | 7617 | 7991 | 8033

en .
Compact knowledge base: The condensed model recorded for Rec ) : 0 — ModelSee M) 351 | o3 | 363 | 18 | 11 | 1

Accuracy on facial-informatic dataset. (Model: CNN-20) Accuracy on fine-grained tasks. (Model: ResNet-50)
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orevious tasks serves as knowledge base with accumulated
experience for weights picking, vielding performance
enhancement for learning new tasks in our experiments.




